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a

In data reconciliatlon and gross error detectlon as in quality control charts most mcthods assume that
the data are serially independent. This assumption is convenient for mathematical treatment, but is
often contradicted by experimental evidence. Recent” work (Kao; et al, 1990, 1991) examines
alternative procedures for mitigating such effects. One of these procedures is to prewhiten the process
data before applying the usual data treatment methods. Prewhitening may be carried out using the.
Bryson and Henrikson method (1968), which is apphcable to first order autoregressive models. In this
note we propose a prewhitening procedure which is apphcable to any autoregressive moving avcragc
(ARMA) model, and which causes only a modest increase in the state space dimensions.:
KEYWORDS White noise Prewhlttcmng Serial correlation. S

INTRODUCTION -

In data reconciliation and gross error detection as in quality control charts most
methods assume that the data are serially independent; see Tamhane and Mah
(1985) and Mah (1990) for a review of these methods. This is convenient for
mathematical treatment but is often contradicted by the experimental evidence.
Process data may be correlated due to many reasons, e.g., process dead time,
feedback control, process dynamlcs model mlsspemﬁcatxon residual measure-
ment errors etc. . :

The effect of serial correlatlons of process measurements in the steady state
chemical process has been studied by Kao et al. (1990). We showed the extreme
sensitivity of the measurement test for gross error detection to serial correlations
- and pointed out that serial correlations should not be ignored. We also proposed
a prewhitening procedure to filter out the serial correlations resulting - in
prewhitened (uncorrelated) residuals to, which standard techniques of gross error
detection for independent process data can be applied. (Note that independence
implies no serial correlation; the converse is also true for normally distributed data.)
- However, in reality even for steady state operations, process conditions vary
continually about a nominal steady state. A truly steady state is almost never
attained. A dynamic system will be a better representation of a real process. A
possible way to account for these problems is using the Kalman filter algorithm
“via the state space model (Bellingham and Lees, 1977; Watanabe and Him-
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melblau, 1982; Narasimhan and Mah, 1988). A major drawback of these papers is
that they assume that the process and measurement noises are white. ‘

Bryson and Henrikson (1968) proposed an approach based on measurement
differencing for the estimation of state variables in a stochastic linear dynamic
system subject to serially correlated measurement noise. They considered the
autoregresswe model of order one (AR(1)) for the measurement noise, in which
case their approach is’ equ1valent to prewhitening, i.e., filtering out serial
correlations so as to make the noise white. However, by keepmg the state space
dimension unchanged their approach introduces cross-correlation between the
process noise and the prewhitened measurement noise, which must be removed
by making a second transformation. These two transformations lead to a model in
the standard Kalman filter form which allows the usual optimal state variable
estimation methods to be employed. Their approach avoids the increase in the
dimensionality of the state space and the ill-conditioned computations associated
with the augmented state approach suggested by Kalman (1963). :

It should be pointed out that the aforementioned advantages of the Bryson and
Henrikson’s approach hold only for the AR(1) model. For more general serial
correlations, e.g.; the noise following an autoregressive moving average (ARMA)
model of general order proposed by Box and Jenkins (1976), their approach loses
the advantage mentioned above and leads to some additional complications. We _
propose a general prewhitening approach, which works for any ARMA model.
This approach does involve an increase in the dimensionality of the state space,
but not to the extent of making the computations ill-conditioned or infeasible.

STATEMENT oF' THE 'PROBLEM SREEEY

Consider a linear dynamrc dlscrete-tlme system descnbed by
State Equatlon

Vx(t+1) Ax(t)+Bu(t)+w(t) W

Measurement Equatlon ' | R N
: Y(t)=HX(f)+V(f)' N ¢

where, : , G L ' '

* x(t) is an n'X 1 vector of state vanables attime ¢t
u(t) is an'r x 1 vector of control mput variables at time ¢ -
~ w(t) is an n X'1 vector of process noises at time :
y(t) is an m X 1 vector of output variables (measurements) at time ¢
(t) is an m X 1 vector of measurement noises at tlme t -
~ A'is an n X n state transition matrix : o
“BisannXr mput.matnx

and

H is an m X n measurement matrix. -
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. The noises w(t) and v(¢) are assumed to be Gaussian with mean 0. and covanance
~ matrices Q and R, respectively. : SR

It is well known that the Kalman filter provides a minimum variance unbtased
state estimate of the discrete-time linear ‘dynamic system described by Eqgs. (1)
and (2), where the noises w(¢) and v(f) are white and Gaussian. However, in
actuality, 'the process and measurement noises may be serially correlated, i.e., the
process noise sequence {w(t),t=1,2,...} and measurement noise sequence
v(f), t=1,2,...} in Egs. (1) and (2) may not be white and may follow the
W ARMA(p, q) models whlch are defined by

[I ‘1’(2)]"(1‘) - E*)(2)]ﬁl(t)

or P
V(o) - ¢'lv(t_1)_”'_¢pv(t_p) a(t) Bla(t—l)—-“—eqa(t—q) (4)

- where e ‘
o O(z) = ¢12” 1+¢2z‘2+ HpzF | )
- 9@R)= Glz +92z-?+ 8,2 (6)

D1y -5 Py él i ; 30, are constant known matrlces l is the: 1dent1ty matnx of
order m and z™* 1s the backshift. operator, ‘i.e., z7/v(t) =v(t—j) for j=1.
Similarly, an analogous: felationship between w(¢) and n(t) can be formulated
with dlfferent values of p and q in.general. -In"the above derivation {a(?), t =
1,¢=2,...} and: {n(t) t=1, 2;:.-.. }‘are‘white noise:sequences with zero mean
and constant covariance matrices Q* and R* 'respectlvely (Note that Q Q*
~and R=R* if w(¢) and v(t) are white, respectively.) IR B 2

- We wish to obtain a‘minimum variance unbiased estimate of the state vanable
x(t) based on measurements up to and including y(¢). ST

METHODS FOR DEALING WITH SERIALLY CORRELATED M
MEASUREMENT NOISE - =~ | :

M easurement Dzﬁ”erencmg A pproach

: ,Flrst let us consxder the case where the process noxse 1s whlte, , but the
measurement noise 'is senally correlated and’ follows’ the ARMA(p, q) model.
Bryson and Henrikson (1968) con51dered a. spec1a1 case of Eq. (4) with p =1,
g=0, i.e., an AR(1) model for" measurement noise, and the system described
by Egs. (1) and (2) wnth Bu(t) 0. Then by deﬁmng a new measurement vanable
at tlme t+ 1 by , : ,

y (t) y(t + 1) ¢1Y(t) (HA ¢1H)X(t) +[HW(I)+3(I +1)] H*X(t) +V (t)

‘it is seen that the new measurement noise v'(f) = Hw(t) + a(t ;+‘~1) forms a white
, n01se sequence w1th zero mean and covarlance matrlx -

il

L E[V(O(W()T] = HQHT + R* =M . (say) @)
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However, v'(¢) is cross-correlated with w(t) the covariance matrix between them
bemg glven by

E[w(t)(v ©)7]= QHT =N '(say) - -

To eliminate thls cross- oorrelatxon Bryson and Ho (1969) mtroduced a matrlx D
w1th

D=NM—' - ~ (10)
The state equation (1) can be rewritteh by adjoining Eq (7 as | o
x(t + l) Ax(t) + w(t) + D[y (t) H*x(t) v'(0)]
=[A - DH*]x(t) +Dy'(¢) + [w(t) — DV’ (t)]
= A*x(r) + Dy'(t) + w'(£) . - (11)

Note that y'(¢) — H*x(t) v'(t) =0. We see that the new process noise w'(t) =

'w(t) — Dv'(¢) and the measurement noise v’(¢) are independent and white. Thus
Eqgs. (7) and (11) together are in the standard Kalman fifter form, and hence the
equations for the optimal filter, variance, gain, etc., can be developed in a
straightforward manner. In doing this, note that the dimension of the state space
has not changed. However, if this approach is-applied to a higher order (p =2,

q=1) ARMA model, this advantage is lost and some additional complications
are encountered. As an example, suppose that. {v(t), t=1,2,...} follows an
AR(2) model. To eliminate: the serial correlation of the measurement noise, we
first define a new, measurement at time ¢ + 2 according to the. Bryson—Hennkson

approach by ' v :

y (t) y(t+2) ¢1y(t+ 1) —¢ay(r) . . :
= (HA?— ¢, HA — ¢>2H)x(t)+[(HA ¢,H)w(:)+nw(t+1)+a(t+2)1
=H*x(t) + v'(f) S (12)

We can see that the state space remains unchanged However the new
measurement noise v (t) at time t+2 is cross-corre]ated with w(t +1) as well as
w(?). Addltlonal transformanons will be necessary to remove these cross-
‘correlations. In general ‘for'an AR(p) model, the new measurement noise v "(t)
at time £+ p ‘will be. cross-correlated with w(z + j), for j = 0,1,2,..., p—1. The
situation  becomes even more comphcated for an MA(q) model. Consider a
simple case in which {v(¢), t = . } follows an MA(l) model. In order to
eliminate the serial correlation of the measurement noise and keep the state space
unchanged, we have to define a new measurement at time ¢ + k such that

YO =y(t+k)+0,y@¢+k—1)+---+ 05 (t+1)+6"y(t) (13)

with k—>w (since (I—8,Z%)™" =1+ 0,Z71 % 0222 + - ). This approach
‘becomes theoretically untenable since it involves infinitely many past values of
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measurement as well as cross-correlations between the measurement noise and
. process noise.

A General Prewhitening Approach

To prewhiten the ARMA(p, q) measurement noise in Eq. (2), we deﬁne a new
measurement y*(¢) at time ¢ such that

y* () =[I-0@)] ' [I- o)y
=[I-0(2)]""[I- (2)]Hx(") + {I-©()] (1 - ‘P(Z)]V(t) |
= [1-0(2)] {1 - ®(z)JHx(t) + a(r) o - 14

Note that the new measurement noise in Eq. (14) is whrte noise a(t), Wthh is
uncorrelated with the process noise w(t). Now let us define

g(t) = [1- ©(2)] 1 - ®(z)]Hx()

=[M—0,z7 == 0,z I 127" —- - - — Gz P|HX()  (15)
Multiplyiné g() by [I- 6,27 — -+ — 6,279, we obtain
g() — 61g(t —1) — Oog(t —2) =+ -+ = 0,8(t—q) -
. =Hx(1) - ¢ Hx(r —1) - - - - — $,Hx(t —p) (16)
or o '
- 8(0) =Hx(1) - ¢HX(t - 1) e HX(t p) + Blg(t - 1) et qu(t -q)

'_H* *(t) ' | o . o s : ) (17)
So we can express y*(t) as ' - ’ ST

y*(t) =g(t) +a(r)

w0 ay)

where R '_
H*=[H|-¢H| | -¢,H|0,]6:] - ]6,] (19)
ror- [ﬂﬂ%x@—lfW Ixe=p)lge =07 |6 -2 |+ [ -]
e (20)

‘H* is an m X [(p +1n + qm] ‘matrix and x*(t) is-a[(p+1n+gm]x 1 aug-
mented vector. Note that x*(r) consists of the current value x(r), the past p values
of the x(t —k), k=1,2,..., p, and the past g values of the supplementary stite
'vanable g(t—j), j=1,2,..., q. Finally the system described by Eqs 1), (2)
and (4) after prewhltemng and augmentatron becomes : ,

State Equatlon '

*(t+1) A*x *(t)+B*u(t)+C*w(t) - B . | '(21)
Measurement Equatron ' 3 | o
y«oéﬂwﬂo+ﬂo', @)
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.where
T A 0 0 0 i 0 0 0 0 o0}
I 0 0 00 0
0 I 0 T o
00 I ;
: B
A¥=| 0 - AR T S L SO | L SR | S
H _¢1H -$pH -+ —¢, Hi-¢,H 6, 0, 8; - - - 8,
0 0 0 - 0 { 06 I 0 0 -- 0
' . 0 1.0
N 5 : 00 0
00 6 i 0 0 0 I 0]
(23)
@9 =[Blo[o]|---[oo]---[o] ~ (49
‘and | ) '
@)y =mfojof---|ofo].--Jo] @)

The dlmensmns of A* B* and C* are {(p+ 1)n + gm] X [(p + Dn +qm]
[(p+1Dn+gm]Xxr, and [(p + Dn + gm] X n, respectively. _

Equations (21) and (22) together are in the standard Kalman filter form and
hence the discrete-time optimal filter recurswe equatlons can be developed in a
stralghtforward way as follows.

2(7) = A% *((t—1)+)+B*u(t—1) . - (26)

P = AP - 1)7)(A®)T +C*Q(C*)” (27)

K*(t) P"‘((t"l) JH)[HPH(( - )T)H*)" +R* ] .. (28)
R =)+ KOy () - HRH ()] (29)

P =~ K"‘(t)H*)P"‘((t--l) ) o o (0)

Note that the state space dunensnon is ( p + l)n +mgq which depends on the order
of the ARMA(p, q) model, but which is finite and linear function of p and gq.
" Also, this approach does not require knowledge of mﬁmtely many past values of
the measurements as in Eq. (13). Also note that since the matrix [H*P*((t —
1)7)(H*)T +R*] is invertible and R*#0, so P*(t*) is not singular. Egs.
(26)-(30) do not increase the computational time tremendously because the
critical dimension, namely, that of the matrix [P (1) )(H*)T R*]'A

remains unchanged.
- For the case where v(¢) follows the ARMAC(L, 1) model, these quantltles
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simplify to
x(?) A 0 0 B
x*)=| x(¢t — 1) A*=|T 0 0 B*={ 0
gt—1) \H -¢H 6, 0
/1 |
C*={ 0], and H*=[H|-¢,H|6,] (31)

MODEL WITH SERIALLY CORRELATED PROCESS AND
MEASUREMENT NOISES |

Let us now consider a more general case of Eqs. (1) and (2) in which the ‘process'
noise as well as the measurement noise are serially correlated and follow the
ARMA(p, q) models. For this case two steps are involved in prewhitening. -

Step 1: We first prewhiten the measurement noise as given above in Eqs (21)
and (22) W1th the understandrng that w(t) in Eq (21) is'not whlte

Step 2: Smce w(t) itself is senally correlated we can then use the augmentatlon
method (Stengel, 1986; Maybeck, 1979) to add it to the prewhitened state
variables, x*(¢). Similar to the aforementioned procedure, we can define an
augmented state vector x**(¢) such that . ' : : :

e+ AN 0 e ol f,fxf(i)
w(t+1) 0:¢1 @2 0P|l W)
w(t) 0: 1 0 -0 0] wz—1)
: _{ 0i 0. 1 00 -
. . : I 0 - .
w(t—p +2) -0t 00X 0 O]wit—p+1)|
wie-p+D) Loio o 1 odlwe-pl
[ B*] 0o 0 ey
0 TEGTVTIG| ne-1)
0 10 - -~ 0 |] n(t-2)
+ | e+ ) )
0] - o . ||p(t—g+1)

) B I | i
or - A

X**(t+1) = AT () + Bu() + Co @) . (32)
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and
x* (1)
y**(r) = [H* |0] 0[ “e- | 0] wSt) " +‘a(t)' ’
w(t—p)
or . . -
Y = H** (@) +a() | (33)

Equations (32) and (33) together again are in the standard Kalman filter form
in which all noises are white. Then the. discrete-time optimal filter recursive
equations can be obtained as before. Again the computational time does not
increase tremendously since only a modest increase in the state space dimension
is involved.

CONCLUSIONS

A general prewhltemng procedure is proposed for dealmg w1th a stochastic linear
dynamic system with serially correlated process and measurement noises. This
procedure should be used before applying the Kalman filter to obtain a minimum
variance unbiased state estimate such that the resulting innovations form a white
noise sequence. The standard techniques for gross error detection in dynamic
systems can be applied thereafter. The prewhitening causes an increase in the
state space dimension, but the increase is not serious enough to make the.
computations ill-conditioned or infeasible. The: proposed approach is apphcable‘
to any ARMA model. | ;
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